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instability between two shear fluids in a channel Couette flow
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Abstract

The instabilities of a channel Couette flow composed of two layers of immiscible fluids were investigated experimentally and

compared with the theoretical predictions of a linear instability analysis. The results show that in the shortwave instability regime,

the experimental results agree well with the theoretical predictions of the linear instability analysis. However, we can find shortwaves

even in the range of the depth ratios when the linear instability predicts only longwaves are unstable. The reasons are believed to be

the dimensional limitation of the experimental apparatus and the existence of the outside and inside wall. In addition, we studied the

dependence of the onset of the shortwaves on the viscosity and density of the fluids.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Interfacial instabilities in multiple fluid layers has

received much attention for their importance in engi-

neering processes, such as coatings, polymer extrusion,

oil transportation, as well as their basic scientific sig-

nificance. Linear stability analyses have identified three

types of instabilities: a long-wavelength instability (Yih,

1967), a short-wavelength instability (Hooper and Boyd,
1983) and an intermediate-wavelength instability whose

wavelength is of the order of the thickness of the fluid

layer (Renardy, 1985). However, even with the huge

amount of literature on the linear instability of the two-

phase flow, few papers (Renardy, 1985; Gallagher et al.,

1996; Kuru et al., 1985) solved the problem for arbitrary

wavenumber, showed the instability regime and inves-

tigated the influence of the physical properties on the
critical Reynolds number. Moreover, liquid–liquid

experiments of the two-phase flow are even less common

(Gallagher et al., 1996; Kao and Park, 1972; Sangalli

et al., 1995).
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Gallagher et al. (1996) investigated the interfacial
instability caused by viscosity stratification of a density-

matched, two-layer, rotating Couette flow. Their results

showed that depending on the depth ratio of the system,

the stability of the interface varies greatly. If longwaves

are unstable, interfacial waves do not appear at a rota-

tion speed that seems to be related to linear instability

analysis and the waves that appear, are not usually very

periodic. Thus at these conditions, the linear theory does
not match the experimental results. When the less vis-

cous fluid is sufficiently thin, the system is stable to

longwaves (a typical behavior for stratified flows) but

can be unstable to shortwaves. In this region, the

experimental results are close to linear predictions.

In this paper we studied the instabilities of two

superposed viscous layers in a channel Couette flow and

compared the theoretical predictions of linear instability
analysis with our experimental data. Our results show

that in the shortwave instability regime, our experi-

mental data agree well with the predictions of the linear

instability analysis. However, in the longwave instability

regime where linear instability analysis predicts that

shortwaves are stable, we also find the shortwave

instability in our experiments. Furthermore, the influ-

ence of the viscosity and density of the two liquids on
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Nomenclature

Re critical Reynolds number based on the bot-

tom layer

Reþ critical Reynolds number based on the upper

layer

l depth ratio

r density ratio

m viscosity ratio

C the Capillary number
G the Grashof number

r0 the interfacial tension between two fluids

k the dimensionless wavenumber

k the wavelength

dþ, d the thickness of the top and bottom fluids,

respectively

qþ, q the density of the top and bottom fluids,

respectively

lþ, l the viscosity of the top and bottom fluids,
respectively
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the stability of the flow in the shortwave instability re-

gime was also studied.
2. Theory

2.1. Governing equation and boundary condition

Two fluids of different viscosity ðlþ; lÞ, kinematic

viscosity ðmþ; mÞ, and density ðqþ; qÞ lie between two

rigid parallel boundaries of semi-infinite extent in the

ðx�; z�Þ plane (Fig. 1). The physical properties of the fluid
with superscript + denote the upper layer. The lower

layer occupies �d 6 z6 0 and the upper layer occupies

06 z� 6 dþ. Asterisks denote dimensional variables. The

lower boundary at z ¼ �d moves with velocity U0 and

the upper boundary is fixed. The fluids are incom-

pressible and satisfy the Navier–Stokes equation. At the

interface, the velocity and shear stress must be contin-

uous, the jump in the normal stress is balanced by sur-
face tension and surface curvature, and the kinematic

free surface condition must hold. We introduce the

following dimensionless variables (without asterisks).

ðx; zÞ ¼ ðx�; z�Þ=d; t ¼ t�m=ðdÞ2; v ¼ v�d=m;

p ¼ p�ðdÞ2=lm

where v ¼ ðu;wÞ is the velocity vector, and p is the

pressure.

After the non-dimensionalization, the governing

equations of motion and boundary conditions become:
Fig. 1. The flow configuration of undisturbed two-layer Couette flow.

The lower layer fluid occupies �d 6 z� 6 0 and the upper layer fluid

occupies 06 z� 6 dþ.
For the upper fluid (fluid 2):

r � vþ ¼ 0 ð1Þ

ovþ

ot
þ vþ � rvþ ¼ r�1ð�rpþ þ mr2vþÞ ð2Þ

For the bottom fluid (fluid 1):

r � v ¼ 0 ð3Þ

ov

ot
þ v � rv ¼ �rp þr2v ð4Þ

where r ¼ qþ=q is the density ratio, m ¼ lþ=l is the

viscosity ratio.

The eight boundary conditions used to solve the

equations are continuity of velocity parallel and normal

to the walls,

uþ ¼ wþ ¼ 0 at z ¼ l ð5Þ

u ¼ Re; w ¼ 0 at z ¼ �1 ð6Þ
where l ¼ dþ=d is the depth ratio, and Re ¼ dU0=m is the
Reynolds number based on the bottom layer parameters.

Continuity of velocity at the interface z ¼ fðx; tÞ gives
uþ ¼ u ð7Þ

wþ ¼ w ð8Þ

Continuity of normal and tangential stress at the inter-

face gives

n � m½rvþ þ ðrvÞT
 � n� pþ

¼ n � ½rvþ ðrvÞT
 � n� p þ Gzþ C�1r � n ð9Þ

t � m½rvþ þ ðrvþÞT
 � n ¼ t � ½rvþ ðrvÞT
 � n ð10Þ

where C ¼ r0d=ðlmÞ is the Capillary number, and

G ¼ ðq � qþÞgd3=ðlmÞ is the Grashof number. n is the

unit normal vector, t is the unit tangential vector, r0 is

the interfacial tension between two fluids.

Additionally, a kinematic boundary condition is re-

quired for dynamic surface deformations.

uþ ¼ df
dt

ð11Þ
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2.2. Linear stability analysis

The stability of this flow is examined using a standard

linear stability analysis, where the dependent variables
are expanded about some parameter, e.

ðuþ;wþ; pþ; u;w; pÞt ¼ ðuþ0 ;wþ
0 ; p

þ
0 ; u0;w0; p0Þt

þ eðuþ1 ;wþ
1 ; p

þ
1 ; u1;w1; p1Þt þOðe2Þ

ð12Þ

At the interface:

uþ ¼ uþ0 þ euþ1 þ e
ouþ0
oz

f1 þOðe2Þ ð13Þ

wþ ¼ wþ
0 þ ewþ

1 þ e
owþ

0

oz
f1 þOðe2Þ ¼ ewþ

1 þOðe2Þ ð14Þ

pþ ¼ pþ0 þ epþ1 þ e
opþ0
oz

f1 þOðe2Þ ¼ pþ0 þ epþ1 þOðe2Þ

ð15Þ

u ¼ u0 þ eu1 þ e
ou0
oz

f1 þOðe2Þ ð16Þ

w ¼ w0 þ ew1 þ e
ow0

oz
f1 þOðe2Þ ¼ ew1 þOðe2Þ ð17Þ

p ¼ p0 þ ep1 þ e
op0
oz

f1 þOðe2Þ ¼ p0 þ ep1 þOðe2Þ ð18Þ

f ¼ f0 þ ef1 þOðe2Þ ¼ ef1 þOðe2Þ ð19Þ
Here, uþ0 , w

þ
0 , p

þ
0 , v0, w0, p0 are the base velocities and

pressures of the upper layer and bottom layer.

After substituting the expansion into Eqs. (1)–(11)

and collecting terms of order e, the resulting two-

dimensional disturbance equations are:

For the upper layer:

2
ouþ0
oz

owþ
1

ox

� �
¼ r�1

�
� o2pþ1

ox2
� o2pþ1

oz2

�
ð20Þ

owþ
1

ot
þ uþ0

owþ
1

ox
¼ r�1

�
� opþ1

oz
þ mr2wþ

1

�
ð21Þ

For the bottom layer:

2
ou0
oz

ow1

ox

� �
¼ � o2p1

ox2
� o2p1

oz2
ð22Þ

ow1

ot
þ u0

ow1

ox
¼ � op1

oz
þr2w1 ð23Þ

For the boundary at the interface, z ¼ fðx; tÞ:
wþ

1 ¼ f1x þ uþ0 jz¼0f1x ð24Þ

wþ
1 � w1 ¼ 0 ð25Þ

� owþ
1

oz
þ ow1

oz
þ ouþ0

oz

�
� ou0

oz

�
f1x ¼ 0 ð26Þ
m
o2wþ

1

oz2

�
� o2wþ

1

ox2

�
¼ o2w1

oz2
� o2w1

ox2
ð27Þ

�pþ1 þ 2m
owþ

1

oz
¼ �p1 þ 2

ow1

oz
þ Gf1 � Cf1xx ð28Þ

where

f1x ¼
of1
ox

; f1xx ¼
o2f1
ox2

For the upper plate (z ¼ l):

wþ
1 ¼ owþ

1

oz
¼ 0 ð29Þ

For the lower plate (z ¼ �1):

w1 ¼
ow1

oz
¼ 0 ð30Þ

We next use a normal mode expansion:

ðwþ
1 ; p

þ
1 ;w1; p1; f1Þt ¼ ½wþðzÞ; pþðzÞ;wðzÞ; pðzÞ; fðzÞ
t eikxþrt

ð31Þ

where k is the wavenumber and r is the growth rate.

Eq. (31) was substituted into the governing equations

(20)–(30), and a set of ordinary differential equations

were then obtained for wþðzÞ, pþðzÞ, wðzÞ, and pðzÞ. Next,

the linearized equations were converted into an eigen-

value problem where r is the eigenvalue and the veloci-

ties and pressures are the eigenvectors. Finally, the
eigenvalue problem was solved using a Chebyschev

spectral tau method (Johnson, 1996; Canuto et al., 1998).
3. Experiment

The difficulty in achieving Couette flow in a straight

channel comes from creating a constant bottom (or
upper) wall motion, and from the set-up length of the

base flow. In a previous paper (Barthelet et al., 1995),

these difficulties have been overcome by bending a

channel of rectangular cross-section into an annular

ring. Our experiment closely follows their device (Fig.

2). The rotation of the bottom plate around the axis of

the ring drags the fluids. However, owing to the radial

velocity gradient and centrifugal forces, the velocity field
may be distorted and further instabilities generated. We

avoid these instabilities by maintaining slow rotation

speeds (<0.29 rev/s). This arrangement has the following

advantages: shearing is achieved by a rigid plate without

any vibrations, flows are fully developed without any

entry or discharge sections, and wave evolution can be

observed over long periods of time. Compared with the

experiments of Gallagher et al. (1996), we do not need to
closely match the densities of the two fluids, and there-

fore, we can freely investigate the instability of different

fluid combinations.



Fig. 3. Growth rate curves for the 50cP silicone oil/water system at

different Reynolds numbers when the depth ratio is 1. This figure

shows that when the Reynolds number is less than 1100, the flow is

stable to longwaves. When the Reynolds number is greater than 1200,

the flow becomes unstable to longwaves.

Fig. 4. Growth rate curves for the 20cP silicone oil/water system at

different Reynolds numbers when the depth ratio is 1. This figure

shows that when the Reynolds number is less than 1800, the flow is

stable to longwaves. When the Reynolds number is greater than 1900,

the flow becomes unstable to longwaves.

Fig. 2. Sketch and photo of the experimental device. (a) Side view, (b)

top view, and (c) a picture of the experimental apparatus.
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The channel is grooved in a PMMA plate, its mean

diameter is 340 mm, the width is 50 mm, and the depth is
15 mm. The bottom plate is driven by a DC gearmotor

(Dayton, model 6Z417A) through a gear chain. The

speed can be adjusted with a DC speed controller. Air

bubbles created during the filling of the channel are re-

moved with a syringe through a small hole in the top

plate.

To test the fluid instabilities at different physical

properties, we used two silicone oils of different viscos-
ities as the top fluids. The silicone oils were purchased

from Clearco Products Co., their viscosities are 20cP,

and 50cP and their densities are 0.946 and 0.955,

respectively. The lower fluid was DI water.

The interfacial tensions between silicone oil and water

were measured with a Kruss K12 processor tensiometer

using a platinum–iridium DeNouy ring. The tempera-

ture of the fluids was kept constant at 30± 0.1 �C using a
flow-through thermostat unit. The interfacial tension

between water and 20cP silicone oil is 79.4 dyn/cm, it is

81.2 dyn/cm between water and 50cP silicone oil.
4. Results and discussion

4.1. Theoretical discussion

If there is no gravity stabilization, Yih’s result (1967)

shows that longwaves are always unstable if the depth

ratio between the more viscous fluid and the thinner

fluid is less than 2. Figs. 3 and 4 are the theoretical

growth rate curves for the 50cP silicone oil/water system

and 20cP silicone oil/water system, respectively. For the

50cP silicone oil/water system, Fig. 3 shows that at low
Reynolds numbers the slope of the growth rate at zero
wavenumber is negative. When the Reynolds number

reaches about 1200, the slope of the growth rate at zero

wavenumber becomes positive, which means that the

long-wavelengths become unstable. The story is similar

for the 20cP silicone oil/water system. Fig. 4 shows that

when the Reynolds number reaches about 1900, the

slope of the growth rate at zero wavenumber switches

from negative to positive and the longwave region be-
comes unstable.

As in reference of Gallagher et al. (1996), our linear

instability analysis shows that the interfacial instability

regime depends strongly on the depth ratio. Fig. 5 shows

the growth rate curves for the 50cP silicone oil/water

system at different depth ratios when the Reynolds

number is 1800 (a typical number in our experimental

set-up). It shows that when the depth ratio is less than 1,
the growth rate curves have a positive slope at 0 wave-

number at a finite Reynolds number and the flow is in



Fig. 6. Experimental and theoretical critical Reynolds number for the

50cP silicone oil/water system at different depth ratios when flow is in

the shortwave instability regime. This figure shows that the theoretical

results of the linear instability analysis agree well with the experimental

results at these conditions.

Fig. 7. Experimental and theoretical critical Reynolds number for the

20cP silicone oil/water system at different depth ratios when flow is in

the shortwave instability regime. This figure also shows that the the-

oretical results of linear instability agree well with the experimental

results for the 20cP silicone oil/water system in the shortwave insta-

bility regime.

Fig. 5. Growth rate curves for that 50cP silicone oil/water system at

different depth ratios when the Reynolds number is 1800. This figure

shows that when the depth ratio is less than 1, the longwave is

unstable, when the depth ratio is larger than 2, the flow is unstable to

shortwaves.
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the longwave unstable regime. However, when the depth

ratio is more than 2, the growth curves always have a

negative slope at 0 wavenumber; therefore, the flow is

stable to longwaves, which is called the ‘‘thin-layer’’

effect (Hooper and Boyd, 1987; Renardy, 1987). In this

region, the flow is unstable to shortwaves. Fig. 5 shows

that when the depth ratio is 3 and 4, the wavenumber of
this shortwave instability is around 0.45. It is important

to mention that when the depth ratio is 1.5, both long-

wave instability and shortwave instability exist.

4.2. Comparison between experimental and theoretical

results

In our experiments, we rotate the bottom plate and
slowly increase the speed until waves are seen at the

interface. We recorded the critical rotation speed, cal-

culated the critical experimental Reynolds number, and

compared it with the critical theoretical Reynolds

number. The following formula was used to calculate

the critical Reynolds number.

Re ¼ dU0q
l

ð32Þ

In the shortwave instability regime,our experimental data

show good agreement with the theoretical data. Figs. 6
and 7 are the comparison between the critical experi-

mental Reynolds number and the critical theoretical data

for the 50cP silicone oil/water system and 20cP silicone

oil/water system, respectively. Both figures show that the

difference between the experimental data and the theo-

retical data are within the tolerance of the experiment.

Therefore, the linear instability analysis can predict

quantitatively the onset of the two-layer fluid flow insta-
bility in the shortwave instability regime. All of the waves

in our experiments have a regular and steady wavelength.
The story is different, however, in the longwave

instability regime. As previously discussed, linear insta-

bility analysis predicts that when the depth ratio is

smaller than 2, the flow is stable to the shortwave

instability. In our experiments, the shortwave instabili-

ties were found in all depth ratios even when the depth

ratio is less than 1. Fig. 8 is a photo of the waves for the

50cP silicone oil/water system when the depth ratio is
0.75. As was the case in the shortwave regime, the waves

found in this regime also have a regular wavelength and

once the waves occur, they are stable at constant rota-

tion speeds. If we further increase the rotation speed, the

amplitude of the waves increases and the wavelength of

the waves decreases until the rotation speed is so high

that mixing of the two fluids occur.

Fig. 9 is the critical experimental Reynolds number
for the 50cP silicone oil/water system when the depth

ratio is less than 1. Fig. 9 shows the same trend as the



Fig. 9. Experimental critical Reynolds number for the 50cP silicone oil/

water system, when the depth ratio is less than 2. At this region, linear

instability analysis predicts no shortwave instability, however, insta-

bilities are still seen in the experiments (Re ¼ dU0l=q is based on the

bottom layer).

Fig. 8. Photo of the short-wavelength instability (50cP silicone oil/

water, l ¼ 0:75).
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experimental data in Figs. 6 and 7. Due to the gravita-

tional stabilization, there is a critical Reynolds number,

above which the instability occurs and the critical Rey-

nolds number decreases with an increase of the depth

ratio. Moreover, the absolute value of the critical Rey-

nolds numbers in Fig. 9 is not significantly different

from that in Figs. 6 and 7. Fig. 10 is the critical wave-

number and wavelength of the system for different depth
ratios. The wavelength is from 7.1 to 4.7 cm and de-

creases with an increase in the depth ratio.
Fig. 10. Experimental critical wavenumber and wavelength for the

50cP silicone oil/water system, when the depth ratio is less than 2. Both

the critical wavenumber and wavelength decrease with an increase in

depth ratio.
We believe there are two possible reasons for this

disagreement. The first reason is due to the dimensional

limitation of the experimental apparatus. Fig. 3 shows

that the wavenumber of the fastest growing longwave is
usually between 0.02 and 0.03 for 50cP silicone oil/water

system when the depth ratio is 1. The dimensionless

wavenumber, k is defined by

k ¼ 2p
d
k

ð33Þ

where d is the thickness of the bottom, k is the wave-

length. When the wavenumber is 0.03, the wavelength is

about 1500 cm. However, the length of the channel in

our experiment is about 210 cm, which is much shorter

than the wavelength of the longwaves. Therefore, the

dimensional limitation of the experiments will resist the
development of the longwaves. The second reason for

this is probably because our experimental system is a

three dimensional channel flow instead of a two

dimensional plane flow, the existence of the outside and

inside walls will also resist the development of the

longwaves and causes the development of the short-

waves.

4.3. The theoretical prediction of the influence of the fluid

property ratios on the onset of the shortwave instability

From the previous discussion, we see that the linear

instability analysis method can predict the onset of the

shortwave instability, this section of the paper studies

the influence of the viscosity ratio, density ratio, and

depth ratio on the shortwave instability of the two-layer
flow using the linear instability analysis method.

4.3.1. The influence of viscosity ratio on the stability

Figs. 11 and 12 are the critical Reynolds numbers at

various viscosity ratios when we change the viscosity of

the upper layer and bottom layer, respectively. Fig. 11

shows that with an increase in the viscosity ratio (i.e. an

increase of the viscosity in the upper layer), the critical
Reynolds number increases. This means that the critical

velocity increases and the fluid becomes more stable.

Therefore, the increase of the viscosity of the upper layer

is beneficial to the stability of the fluid.

Because our critical Reynolds number is Re ¼
dU0l=q, the change in the viscosity of the bottom layer

causes a change in the critical Reynolds number even

when the critical velocity does not change. Therefore,
for the problem where the viscosity of the bottom layer

changes, the critical Reynolds number defined in this

way cannot represent the stability of the fluid. For this

problem, we can define the critical Reynolds number

Reþ ¼ dþU0lþ=qþ, because dþ, qþ and lþ are constant

in this problem. Fig. 12 shows the change in the critical

Reynolds number, Reþ, with the change in the viscosity

ratio when the viscosity of the bottom layer decreases.



Fig. 13. The theoretical critical Reynolds number, Re, at various

density ratios when the density of the upper layer increases

(Re ¼ dU0l=q, l ¼ 3, q ¼ 1000 kg/m3, m ¼ 50, G ¼ 40; 000ð1� rÞ and
C ¼ 350; 000). When the density of the upper fluid increases, the crit-

ical Reynolds number decreases and the flow becomes more unstable.

Fig. 14. The theoretical critical Reynolds number, Reþ, at various

density ratios when the density of the bottom layer decreases

(Reþ ¼ dþU0lþ=qþ, m ¼ 50, l ¼ 3, qþ ¼ 950 kg/m3, G ¼ 40; 000

ð1� rÞ=r and C ¼ 350; 000). A decrease in the density of the bottom

fluid increases the critical Reynolds number and the flow becomes

more unstable.

Fig. 12. The theoretical critical Reynolds number, Reþ, at various

viscosity ratios when the viscosity of the bottom layer decreases

(Reþ ¼ dþUþ
0 lþ=qþ, r ¼ 0:95, l ¼ 3, q ¼ 1000 kg/m3, G ¼ 0:8 m2 and

C ¼ 140 m2). When the viscosity of the bottom fluid decreases, the

fluid becomes more unstable. Therefore, an increase in the viscosity of

the bottom fluid makes the flow more stable.

Fig. 11. The critical Reynolds number, Re, at various viscosity ratios

when the viscosity of the upper layer fluid increases (Re ¼ dU0l=q,
r ¼ 0:95, l ¼ 3, q ¼ 1000 kg/m3, G ¼ 2000 and C ¼ 350; 000). When

the viscosity of the upper fluid increases, the critical Reynolds number

increases and the flow becomes more stable.
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In Fig. 12, Reþ decreases when the bottom layer

viscosity decreases. The critical velocity also decreases

and the fluid becomes more unstable. Therefore, a de-

crease in the viscosity of the bottom layer causes the

fluid to become more unstable and an increase in the

viscosity of the bottom layer is beneficial to the stability
of the fluid. This is the same result as before when the

top layer viscosity increased.

4.3.2. The influence of the density ratio on the stability

Figs. 13 and 14 give the change of the critical Rey-

nolds number with a change of the density ratio when

the densities of the upper layer and bottom layer change,

respectively. From Fig. 13, we see that with an increase
in the density ratio by increasing the density of the upper

layer decreases the critical Reynolds number. This

means that the critical velocity decreases and the fluid

becomes more unstable. Therefore, decreasing the den-

sity of the upper layer is beneficial to the stability of the

fluid. This is easy to understand because of the gravi-

tational stabilization.
When the viscosity of the bottom layer changes, we

have the same problem as before, where the Reynolds

number must be defined in terms of the upper layer

parameters. For this problem, we use the critical Rey-
nolds number Reþ ¼ dþU0lþ=q. Fig. 14 shows the

change of the critical Reynolds number, Reþ, at various
density ratios ratio when the viscosity of the bottom

layer decreases.

In Fig. 14, when the density ratio increases by

decreasing the density of the bottom layer, the critical

Reynolds number, Reþ, increases. This indicates that the
critical velocity increases and the flow becomes more
stable. Therefore, decreasing the density of the bottom

layer is beneficial to the stability of the fluid. The reason

for this is probably when the density of the bottom layer

increases, more energy is put into the system for the

same rotation speed.
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5. Summary and conclusion

Linear instability analysis shows that depending on

the depth ratio, the interfacial instability of two-layer
fluid flow can be a longwave or a shortwave instability,

respectively. In this paper, we compared our experi-

mental results with the theoretical results of a linear

instability analysis. The results show that in the short-

wave regime, the experimental result agrees well with the

theoretical prediction of the linear stability analysis.

However, we find shortwaves in our experiment even in

the range of depth ratios where the linear instability
analysis predicts only the longwaves are unstable. The

reasons for this are believed to be the finite length of the

channel and the influence of the inside and outside wall

in our experiments.

In this paper, we also investigated the influence of the

viscosity and density of the fluid on the onset of the

shortwave instability using linear instability analysis.

The result shows that increasing the viscosity of both
layers makes the system more stable and decreasing the

density of both layers makes the system more stable.
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